Counting the Number of Hamilton Cycles in Random Digraphs
نویسندگان
چکیده
We show that there exists a a fully polynomial randomized approximation scheme for counting the number of Hamilton cycles in almost all directed graphs.
منابع مشابه
Packing and counting arbitrary Hamilton cycles in random digraphs
We prove packing and counting theorems for arbitrarily oriented Hamilton cycles in D(n, p) for nearly optimal p (up to a logc n factor). In particular, we show that given t = (1 − o(1))np Hamilton cycles C1, . . . , Ct, each of which is oriented arbitrarily, a digraph D ∼ D(n, p) w.h.p. contains edge disjoint copies of C1, . . . , Ct, provided p = ω(log 3 n/n). We also show that given an arbitr...
متن کاملPacking, Counting and Covering Hamilton cycles in random directed graphs
A Hamilton cycle in a digraph is a cycle passes through all the vertices, where all the arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed graphs is well studied and is known to be hard. One of the main reasons for this, is that there is no general tool for finding Hamilton cycles in directed graphs comparable to the so called Posá ‘rotationextension’ te...
متن کاملCycles and Matchings in Randomly Perturbed Digraphs and Hypergraphs
We give several results showing that different discrete structures typically gain certain spanning substructures (in particular, Hamilton cycles) after a modest random perturbation. First, we prove that adding linearly many random edges to a dense k-uniform hypergraph ensures the (asymptotically almost sure) existence of a perfect matching or a loose Hamilton cycle. The proof involves a nonstan...
متن کاملAn Algorithm for Finding Hamilton Cycles in Random Directed Graphs
We describe a polynomial (O( n’.‘)) time algorithm DHAM for finding hamilton cycles in digraphs. For digraphs chosen uniformly at random from the set of digraphs with vertex set (1,2,. . . , n } and m = m(n) edges the limiting probability (as n + co) that DHAM finds a hamilton cycle equals the limiting probability that the digraph is hamiltonian. Some applications to random “ travelling salesma...
متن کاملHamilton decompositions of regular expanders: Applications
In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n − 1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Random Struct. Algorithms
دوره 3 شماره
صفحات -
تاریخ انتشار 1992